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Measurements in the turbulent momentum and thermal boundary layers on a rotating
disk with a uniform heat flux surface are described for Reynolds numbers up to 106.
Measurements include mean velocities and temperatures, all six Reynolds stresses,
turbulent temperature fluctuations, and three turbulent heat fluxes. The mean velocity
profiles have no wake region, but the mean temperature profiles do. The turbulent
temperature fluctuations have a large peak in the outer layer, and there is a third
turbulent heat flux in the cross-flow direction. Correlation coefficients and structure
parameters are not constant across the boundary layer as they are in two-dimensional
boundary layers (2DBLs), and their values are lower. The turbulent Prandtl number
agrees with 2DBL values in the lower part of the outer region but is reduced from the
2DBL values higher in the boundary layer. In the outer region of the boundary layer,
the transport processes differ significantly from what is observed in two-dimensional
turbulent boundary layers: ejections dominate the transport of momentum while both
ejections and sweeps contribute to the transport of the passive scalar.

1. Introduction
The flow on a disk in an otherwise quiescent environment is of interest as a simple

flow for investigating three-dimensional turbulent boundary layer (3DTBL) physics
and as a benchmark flow that can be used in modelling more complex flows directly
relevant to rotating machinery. The flow exhibits skewing of the velocity vector
(figure 1) across the boundary layer which is the defining characteristic of 3DTBLs.
The skewing develops because a radial pressure gradient cannot be maintained in
the infinite quiescent medium leaving nothing to oppose the centrifugal force felt by
fluid elements. Rotating disk flows are one of three classes of 3DTBLs. The other
classes are pressure-driven flows such as the flow on the endwall of a bend or around
an obstacle and shear-driven flows which occur when a wall moves in a direction
different from the main flow direction. These classes of 3DTBLs generally begin
as 2DTBLs and are perturbed into three dimensions by the pressure gradient or
wall shear. Thus, they are expected to have strongly non-equilibrium characteristics.
The disk boundary layer is unique because it maintains nearly constant skewing all
the way from its origin as a laminar boundary layer through its development as a
turbulent boundary layer. Thus, the disk boundary layer provides the opportunity to
study turbulence in equilibrium with a skewed mean velocity profile.

Two common characteristics differentiate 3DTBLs from 2DTBLs: (i) the shear
stress vector is misaligned from the mean strain rate vector and (ii) there is a
reduction in the turbulence’s ability to mix momentum for a given amount of turbulent
kinetic energy. The latter is normally described using the a1 parameter, a1 = −u′v′/k2



226 C. J. Elkins and J. K. Eaton

(k2 is twice the turbulent kinetic energy), a parameter used to calculate the cµ constant
important in the κ–ε equation set. The a1 parameter is consistently 0.15 in 2DTBLs
but can be much lower in 3DTBLs. Recent studies have focused on structural
features of the turbulence in an effort to explain reduced shear stress levels observed
in previous 3DTBL experiments. Littell & Eaton (1991) measured single-point and
two-point statistics in an air-flow disk apparatus, and Chiang & Eaton (1993) made
a flow visualization study of the near-wall structure in a water-flow apparatus. These
studies led to the conclusion that gradients in the cross-flow velocity profile render
the near-wall structures less efficient at producing sweeps and bursts, the two events
associated with large shear stress production in turbulent boundary layers. Fleming
& Simpson (1994) examined the near-wall streaky structures in two- and three-
dimensional boundary layers using hydrogen bubble flow visualization. They found
that structures in the three-dimensional flow are more stable and quiescent while the
streaks in the two-dimensional flow oscillate energetically and interact more with the
surrounding fluid.

Johnston & Flack (1996) compared 11 recent 3DTBL experiments and concluded
that the stronger the cross-stream pressure gradient, the more skewing there is in
the inner layer and the larger the reduction in a1. Their hydrogen bubble flow
visualization of the sublayer and buffer regions in two 3DTBLs showed that the
strength of ejections did not change with cross-stream pressure gradient, but the
frequency of the ejection events did.

The same turbulent eddies responsible for shear stress production are often associ-
ated with heat flux production. Perry & Hoffmann (1976) showed a high probability
of coincidence between strong momentum and heat flux events in their study of a
heated 2DTBL. This leads to the hypothesis that the turbulent heat flux in 3DTBLs
will be lower than predicted by conventional models. What is not clear, though, is
which will be affected more by the skewing, the turbulent shear stress or the turbulent
heat flux. Of particular interest to modellers is the turbulent Prandtl number which
indicates the relative strengths of turbulent mixing of heat and momentum.

The rotating disk flow has been studied extensively (see review in Littell & Eaton
1991) including several studies of the surface heat transfer from an isothermal surface
(Cobb & Saunders 1956; Popiel & Boguslawski 1975; and McComas & Hartnett
1970). Elkins & Eaton (1994) measured the heat transfer from a uniform heat flux
surface while Tadros & Erian (1983) computed the heat transfer for both isothermal
and uniform heat flux conditions. There have been no reported measurements of the
turbulent heat flux or other scalar transport in disk flows, nor have there been turbu-
lent heat transport measurements reported for other simple 3DTBLs. Abrahamson &
Eaton (1991) investigated the effect that three-dimensionality has on turbulent heat
transfer by measuring the surface heat transfer coefficients from a uniform heat flux
surface in the flow around a 60◦ and a 90◦ wedge. The results showed that an increase
in the three-dimensionality of the flow reduced the surface heat transfer rate. Their
measurements provided little insight into why or how the turbulent heat transfer is
decreased.

The objectives of this experiment were to measure all of the turbulent heat flux
components and to calculate the turbulent Prandtl number for the disk flow. These
data will be useful for heat transfer modelling, but more importantly, they provide
an additional avenue to explore turbulence structure modification by mean flow
skewing. Heated two-dimensional turbulent boundary layer cases are well-documented
in the experiments of Antonia, Danh & Prabhu (1977), Subramanian & Antonia
(1981), Gibson & Verriopoulos (1984), and many others. The effects of the three-
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Figure 1. Mean tangential and radial velocity profiles in the rotating disk boundary layer as seen
in the rotating reference frame. Also shown are the coordinate systems used in this study.
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Figure 2. Construction of the heat transfer disk.

dimensionality in the rotating disk boundary layer will be evaluated by comparing
the results of the present experiment to these 2DTBL data.

2. Facility and experimental techniques
The experiment used the apparatus of Littell & Eaton (1991) modified for heat

transfer studies. A 1 m diameter heated disk with a nominally uniform surface heat
flux rotated in still air with a vertical axis of rotation. The disk (see figure 2)
had a composite construction with a 13 mm thick aluminium base disk, a 13 mm
thick insulating layer of balsa wood, a thermofoil heater supplying an approximately
uniform heat flux up to 1 kW m−2, and a 1 mm thick layer of stainless steel which
served as the surface for the boundary layer. Because of the composite construction
of the disk, the surface was slightly wavy with a maximum variation of ±0.15 mm.
The height variation did not measurably affect the turbulence as is evident in the
agreement between present results and the measurements of Littell & Eaton (1991)
who used a much flatter disk. However, it was necessary to phase lock the data
sampling to the disk rotation when the probes were close to the disk where vertical
gradients in the boundary layer were steep. In these cases, measurements were taken
only when a specific 6◦ sector of the disk passed below the probes. The maximum
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rotation speed was 1000 r.p.m. which gave a maximum Reynolds number of 106 at a
40 cm radius, the primary measurement location.

The thermofoil heater was split into three different annular regions. The central
portion with a 7.5 cm radius was unheated. The region from 7.5 cm to 20 cm radius
was heated by an inner heater and from 20 cm to 48 cm by an outer heater. Two
different boundary conditions were investigated using this system: BC1 had a uniform
heat flux surface for radii from 7.5 cm to 48 cm, and BC2 had a uniform heat flux
surface over the annular region for radii from 20 cm to 48 cm. The first boundary
condition heated the region of the disk with laminar, transitional, and turbulent flow
while the second heated only the turbulent region.

A 30 cm wide annular apron surrounding the disk was used to separate the boundary
layers on the top and bottom surfaces of the disk. Vanes were mounted on the top
surface of the apron to turn the flow coming off of the disk. This removed the
angular momentum of the exiting boundary layer to provide a quiescent entrainment
flow in the 2.4 m wide by 2.7 m deep by 3.0 m tall test cell. The effectiveness of
these vanes is confirmed by the excellent agreement between the measured velocity
field and the analytic solution for laminar flow on a rotating disk in an infinite,
quiescent medium. The bottom of the disk was completely enclosed by an insulated,
temperature-controlled shroud to eliminate fluid dynamic disturbances caused by the
bottom side boundary layer and to minimize the backloss of heat. For each Reynolds
number, the rig was run until the surface temperature distribution reached steady
state. By controlling the shroud temperature, the temperature differences between the
disk and the ambient air drifted less than 0.1 ◦C over the entire data taking period
which lasted for 1–2 hours.

The probe traverse was mounted 1 m above the disk on a steel arch that was
vibrationally isolated from the support frame. Translational resolution in the vertical
direction was 1.6 µm and rotational resolution about the probe stem was 0.5◦.

Constant-temperature thermal anemometers (TSI Model IFA-100) were used to
measure velocity, and a custom constant-current anemometer was used to measure
temperature. It was estimated from a power spectrum of the tangential velocity
fluctuations that a 3 kHz bandwidth was necessary for the probes to capture the
energy-containing scales in the flow. A digital compensation technique based on the
method of Wroblewski & Eibeck (1990) was used to extend the frequency response
of the cold wires up to 3 kHz.

In this method, a wire transfer function is calculated in the frequency domain
from theory using the calibrated time constants of the probe prongs, wire plating,
and the active region of the cold wire. The temperature signal is filtered at 10 kHz
using a low-pass 8-pole Butterworth filter and sampled at 20 kHz. Each data record is
fast Fourier transformed, divided by the wire transfer function, and then inverse fast
Fourier transformed to reconstruct the actual temperature time record. More details
are available in Elkins & Eaton (1997).

Three probes were used in the experiment: the dual-wire probe of Littell & Eaton
(1991) was used to measure the mean velocity and temperature, a single cold wire
was used to measure mean and fluctuating temperature, and a custom three-wire heat
flux probe (see figure 3) was used to measure the Reynolds stresses and the turbulent
heat fluxes. The dual-wire probe used two 5 µm diameter platinum-coated tungsten
wires with l/d = 270 lying in a plane parallel to the disk surface but oriented at ±45◦
to the probe axis. Using l/d > 250 ensured the cosine law could be used for these
wires. Details of the use of this probe for measurements in the heated boundary layer
are found in Elkins & Eaton (1997).
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Figure 3. Triple-wire heat flux probe used to measure Reynolds stresses and heat fluxes.
Dimensions in mm.

The single cold-wire probe was made with 1 µm Pt–10%Rh Wollaston wire. A
large l/d = 900 was used to decrease the effects of the wire plating and probe prongs
in order to simplify the frequency compensation for the 1 µm probe. An operating
current of 0.2 mA was used which resulted in self-heating of less than 0.1 ◦C for
velocities greater than 1 m s−1. This probe was used to take turbulent temperature
measurements close to the disk.

The three-wire heat flux probe consisted of two 2.5µm platinum-coated tungsten
hot wires separated by 0.35 mm in a cross-wire formation with a 2.5µm cold wire
placed 0.55 mm upstream of the geometric centre of the cross-wire and perpendicular
to the plane of measurement of the cross-wire. The size parameters were chosen
following design criteria given in the literature (Wyngaard 1968; Guitton & Patel
1969; Gessner & Moller 1971; Strohl & Comte-Bellot 1973; Nakayama & Westphal
1986; Blair & Bennett 1987; Ligrani & Bradshaw 1987a, b) and following a similar
design to that used by Littell & Eaton for their cross-wires. This was done to achieve
the best resolution while still measuring temperature and velocity without interference
effects. This probe could be oriented in four different roll positions each separated by
45◦ in order to measure all Reynolds stress and turbulent heat flux components. The
current used for the 2.5 µm cold wire was 1 mA which produced an overheat of 0.3 ◦C
at 1 m s−1. Since the 2.5 µm cold wire measured temperature fluctuations which are
not as sensitive to overheat, mean temperature accuracy was sacrificed for a higher
signal-to-noise ratio.

The probe signals were conditioned with Frequency Devices model 901F1 low-pass
8-pole Butterworth filters with cutoff frequencies of 10 kHz. The signals were sampled
using a MSE 386 pc clone, a Metrabyte DAS-20 12 bit A/D board, and a SSH-4
simultaneous sample and hold card.

Because of the size of this probe, measurements could be taken only as close
as y/δ2 = 1.1, y+ = 123 for Re = 6.5× 105 and y/δ2 = 1.2, y+ = 193 for Re = 106.
Above these heights, the features of the disk height profile were washed out so it was
not necessary to phase lock the measurements. As the probes were in the stationary lab
frame, the thermal wake from the hot wires contaminated the cold-wire temperature
signal at heights very far from the disk where the percentage of turbulent flow,
intermittency, was less than 80%. This made heat flux measurements impossible at
heights above y/δ2 = 5.8, y+ = 650 for Re = 6.5× 105 and y/δ2 = 7.2, y+ = 1210 for
Re = 106.

The experimental uncertainties are listed in table 1. Uncertainty for the mean
velocity and Reynolds stresses match those of Littell & Eaton since similar measure-



230 C. J. Elkins and J. K. Eaton

Quantity Uncertainty % of Quantity
U 3% U

u′2 5% u′2
v′2 5% u′2
w′2 5% u′2
u′v′ 10% u′v′
v′w′ 15% u′v′
u′w′ 10% u′v′
T − T∞ 5% T − T∞
θ′2, 1 µm 5% θ′2
θ′2, 2.5 µm 15% θ′2
u′θ′ 11% u′θ′
v′θ′ 11% v′θ′
w′θ′ 12% w′θ′
Prt 17% Prt

Table 1. Uncertainties in the quantities measured with the 1 µm single cold wire and the heat flux
probe. Cross-wire uncertainties from Anderson & Eaton (1989).

ment techniques were employed in this study. The frequency compensation of the
temperature signal accounts for most of the uncertainty in the turbulent heat flux
quantities. The uncertainty for these quantities was estimated from the analysis of
Wroblewski & Eibeck (1990) since the frequency compensation in this study is based
on their methods. Using these estimates, the uncertainty for Prt is 17% for the data
closest to the disk and is due mainly to uncertainty in v′θ′. As discussed by Littell
& Eaton (1994), the uncertainty in the measured quantities is expected to increase
with distance from the disk as the turbulence intensity increases. In their conservative
estimates, the uncertainty doubles for a turbulence intensity of 40% corresponding to
a height of y/δ2 ≈ 5.

There is another contribution to uncertainty that was not considered in the above
analyses: the effects of wire length and wire spacing. Although the heat flux probe
was designed using criteria documented in the literature, it is believed that the probe
under-measures turbulent velocities, especially v′. In previous 2DTBL studies such
as Blair & Bennett (1987), a correction for the effects of wire spacing was applied.
However, there is some question as to what an appropriate correction would be in a
3DTBL, so no correction was applied in this study. Since it is primarily a problem
in v′, both u′v′ and v′θ′ are affected similarly, and the overall effect on Prt cancels
to some extent. Conservative estimates of this error add 4% to the previously stated
uncertainty of Prt for y/δ2 ≈ 1, but this uncertainty decreases with probe height as
the measurement of v′ becomes more absolutely accurate in the outer layer. It should
be stated that although the absolute values of the u′, v′, and w′ dependent quantities
may have high uncertainties, the general trends in the data, i.e. the differences and
similarities between BC1 and BC2 for both Reynolds numbers, are believed to be
real and significant.

3. Results
3.1. Mean velocity

The results are presented in the disk frame of reference which is right-handed
and has its origin at the measurement radius. For convenience in comparing these
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Re Boundary Udisk δ1 δ2 δH Tτ uτ ν/uτ Tdisk − T∞
at r = 0.4 m condition (m s−1) (mm) (mm) Reδ2

(mm) (◦C) (m s−1) (µm) (◦C)

6.5× 105 BC1 25.26 2.27 1.62 2480 3.67 0.38 1.13 14.6 10.3
6.5× 105 BC2 25.26 2.24 1.63 2480 2.98 0.41 1.13 14.7 10.2

106 BC1 42.10 2.13 1.56 3970 3.21 0.33 1.79 9.3 9.6
106 BC2 42.10 2.13 1.56 3970 2.80 0.39 1.78 9.3 10.8

Table 2. Summary of boundary layer parameters for the four turbulent cases.

results with other studies, the cylindrical coordinates and velocities are redefined in
terms of Cartesian coordinates and velocities (Figure 1). In this frame of reference,
the +y-direction is vertically upward, the +x-coordinate is in the negative tangential
direction, and the +z-coordinate is in the negative radial direction pointing at the axis
of rotation. The velocities V , U, and W correspond to these coordinates, respectively.
These velocities are defined with respect to velocities in cylindrical coordinates as

(−W,−U,V ) = (Ur,Uφ,Uy).

Note that the negative signs result from the definition that positive U in the rotating
frame results from positive rotation Ω.

In the lab frame, the velocity at the edge of the boundary layer is zero which makes
it difficult to determine δ99. An alternative boundary layer length scale is provided
by the momentum thickness based on the velocity vector magnitude, denoted by δ2.
This quantity is determined with better certainty in the disk flow and will be used
to normalize most of the results that follow. Other integral parameters as well as
the operating conditions for the two Reynolds numbers, 6.5× 105 and 106 and both
boundary conditions are listed in table 2.

Figure 4 compares the total velocity magnitude in the disk frame from the present
experiment with BC1 to Littell & Eaton’s (1991) results. The cross-flow velocity
profiles are shown in figure 5. Similar profiles were obtained in the BC2 cases. The
close agreement between the heated and unheated mean flow and Reynolds stresses
as will be shown below indicates that the physics in the momentum boundary layer
is not altered by the heating.

Littell showed that with an appropriate choice of skin friction coefficient, the mean
tangential velocity can be fit by the conventional log law with constants κ = 0.41
and C = 5.0. Figure 6 compares the mean tangential velocity profile in a semi-log
plot with the log law including the Van Driest model for the buffer region. Values
for uτ were alternatively calculated by fitting the mean temperature data to the
conventional thermal log law (see (3.3)). While there is some question as to whether
the conventional flat-plate log laws apply in this three-dimensional flow, the values
for uτ determined by each method agree to within a few percent justifying the use of
uτ as an internally consistent velocity scale in the results that follow.

One noteworthy characteristic of the mean velocity profiles is the lack of a wake
profile. Littell associated this with the acceleration of the boundary layer as it moves
to larger radii. In the disk flow, the tangential velocity increases proportionally with
radius, and the effect of this on the mean velocity profile is similar to the acceleration
created by favourable pressure gradients in 2DTBLs (cf. Blair 1981). In the outer
layer, the large eddies circulate fluid which has come from slower radii, creating the
slightly lower mean velocities in the wake region of figure 6.
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3.2. Turbulent velocity characteristics

The three Reynolds normal stresses measured in the heated boundary layer are shown
in figure 7. The normal stress ratios are similar to other two- and three-dimensional
boundary layers in that u′2 ≈ 2w′2 ≈ 3v′2. The agreement with Littell is quite good
except for a discrepancy in u′2/u2

τ which is 5% lower than Littell’s results near the
wall. Repeating the measurements for an isothermal case gave the same result as
the heated case indicating that the small discrepancy in u′2 is related to physical
characteristics of the heat transfer disk.

The results for the three Reynolds shear stresses are shown in figures 8(a), 8(b), and
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8(c). The presence of the cross-flow results in the two stresses −ρv′w′ and ρu′w′ which
are zero in 2DBLs. The profile for −v′w′ shows that it reaches a peak and then turns
toward zero around y/δ2 = 2. This profile should cross zero around y/δ2 = 0.5 which
corresponds to the location where the mean radial shear rate, ∂W/∂y, changes sign.
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BC2. In these profiles, the curves are cubic splines fit to the thermocouple measurements represented
by the symbols. The primary measurement location is r = 0.4 m.

The primary shear stress component, −ρu′v′, differs significantly from its values
in 2DTBLs. Subramanian & Antonia (1981) show that −u′v′/u2

τ is nearly constant
and slightly less than 1 at y/δ2 ≈ 1, and the value decreases linearly to zero at the
edge of the boundary layer. The present measurements show lower levels of shear
stress and a different profile shape in which u′v′ decreases rapidly from the wall value
and asymptotes to zero giving a concave-up shape. The differences can be explained
by integral momentum balances. In the turbulent flat-plate boundary layer with no
pressure gradient, the wall shear stress is balanced by viscous shear, ρu′v′, and a
streamwise change in momentum as the boundary layer grows. A conservation of
angular momentum analysis in the disk boundary layer shows that an additional
radial flux term changes the shear stress characteristics. Estimates made from an
integral analysis using mean flow measurements indicate −u′v′/u2

τ should reach a
maximum value between 0.8 and 0.9 for y/δ2 < 1. In figure 8(a), the value of −u′v′/u2

τ

is 0.5 at y/δ2 = 1. Part of the reason this value is low is the difficulty in measuring v′
discussed in § 2. The uncertainty in uτ already discussed may also contribute to this
deviation.

3.3. Mean temperature

The heat transfer coefficient in the rotating disk boundary layer is constant with radius
in laminar flow, increases rapidly with radius through the transition region (h ∝ r7),
and increases slowly with radius in the turbulent flow (h ∝ r0.6). For the uniform
surface heat flux boundary condition, this creates a surface temperature profile with a
mildly negative radial temperature gradient at the measurement location of r = 40 cm
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for both Reynolds numbers and boundary conditions studied. The surface temperature
profiles for Re = 6.5× 105 and 106 are shown in figures 9(a) and 9(b), respectively.

Volino & Simon (1994) have shown that the thermal law of the wall is very sensitive
to streamwise accelerations due to pressure gradients for 2DTBL flow. Although the
disk flow experiences acceleration, agreement with the traditional thermal law of the
wall (κθ = 0.46 and Cθ = 3.6, Kays & Crawford 1980) is fairly good. The data shown
in figure 10 are normalized using different values for uτ than those in table 2. These
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values are lower by 3–5% except in the Re = 6.5 × 105 BC1 case in which uτ is 5%
higher. There is an uncertainty of 100µm in the probe height due to changes in the
disk height and circumferential surface profile as the disk was heated to steady state.
The profiles have been offset by this amount and the uncertainty for each Reynolds
number is shown in figure 10 by the error bars at the inner most points.

Surprisingly, above y+ = 300, there are wake profiles in the temperature data while
the wake profiles were absent in the velocity data. These profiles show a significant
dependence on upstream boundary condition. The BC1 profiles have higher values
than their respective BC2 profiles at the outer edge of the boundary layer since the
development lengths for the thermal boundary layer are greater.

3.4. Temperature fluctuations

Figure 11 shows 1 µm cold wire measurements of the turbulent temperature fluctu-
ations, θ′, compared to two 2DTBLs (Wroblewski & Eibeck 1990, Reδ2

= 3300 and
Blair & Bennett 1987, Reδ2

= 5400). Tτ (qw/(ρcpuτ)) provides the best temperature
scale for these data. To be consistent, the normal coordinate is scaled by δ2; however,
δH ∫ ∞

0

Utot

Udisk

(
T − T∞
Tdisk − T∞

)
dy

does a better job of scaling the temperature fluctuation data by aligning the outer
layer peaks. Close to the disk there is a peak of about the same magnitude as found
in 2DTBLs, but there is an additional peak in the outer layer that will be discussed
below.

Figure 12 shows a semi-log plot of θ′ in inner coordinates demonstrating that
the peak in θ′ occurs between y+ = 300 and 400, at the start of the wake region
in the mean temperature profile. The surface temperatures are high in the laminar
region at small radii, and much lower in the transition and turbulent regions. It
is hypothesized that fluid that is warmed passing over the laminar region is rolled
up into the large eddies of the transition and turbulent regions. This fluid remains
warm for a significant distance downstream due to weak turbulent diffusivity in the
outer layer. The large eddies mix the hot fluid from far upstream and relatively cool
fluid from nearby causing high values for the turbulent temperature fluctuations. The
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Figure 13 (a). For caption see facing page.

presence of hot fluid also helps explain the boundary condition dependence of the
wake profiles in the mean temperature data.

There are a few clues which confirm this hypothesis. The first is that the data
for BC1 have the largest θ′ peaks and the highest temperatures in the laminar and
transition regions. The second is that the peaks move out for the higher Reynolds
number cases. This suggests that the warm fluid is slowly being pushed out with
boundary layer development. A final clue is that there is no production peak for θ′
in the outer portion of the boundary layer. Since θ′ must come from somewhere, it
is likely that it is created upstream. G. N. Coleman (1997, personal communication)
observed a similar outer layer peak in his simulation of a heated, incompressible
Ekman layer and suggested that it was created early and was diffusing outward
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Figure 13. (a) The turbulent heat fluxes −u′θ′, v′θ′, and −w′θ′ for Re = 6.5× 105 and 106 with BC1
compared to u′θ′ and v′θ′ measured by Wroblewski & Eibeck (1990) in a 2D flat plate boundary
layer. Error bars indicate uncertainty from table 1. (b) As (a) but for BC2.

with time. It is hypothesized that at very high Reynolds numbers, the θ′ profiles will
appear more like the profile for BC2 and Re = 106 since only the slight negative
radial temperature gradient will be driving the levels of θ′ in the outer layer.

3.5. Turbulent heat fluxes

Figure 13(a) compares the turbulent heat flux measurements for BC1 to typical
values for the heat fluxes in a 2DBL, and figure 13(b) shows the same measurements
for BC2. A significant difference between the disk and flat plate is the existence
of the cross-stream heat flux −w′θ′ which is zero for 2DBLs. The −u′θ′ and v′θ′
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Figure 14. The structure parameter (u′2 + w′2)/v′2 for all cases. Error bars from table 1.

profiles agree much better than the profiles for the radial heat fluxes, which show
large differences between Reynolds numbers and boundary conditions. The values of
v′θ′/uτTτ at points closest to the disk are well below a value of 1 suggested by integral
analysis. As discussed in § 2, this is primarily due to difficulty in measuring v′ with the
cross-wire. Although the values are low, the measurements should be self-consistent,
and the differences observed between cases are believed to be real.

Normalization by enthalpy thickness does a fair job of collapsing the data for
−u′θ′ and v′θ′, and, in particular, aligns the peaks in the v′θ′ and −w′θ′ fluxes. The
peaks for v′θ′ occur around y/δH = 1, and the peaks for w′θ′ occur at y/δH = 1.5.
Interestingly, the peaks for θ′ occurred around y/δH = 1.5–2. Also worth noting is
that the radial heat fluxes in the outer layer are largest in the BC1 cases which had
the largest θ′ peak values. This suggests a stronger relationship between the radial
heat flux and the temperature fluctuations than for the other two turbulent heat flux
quantities.

3.6. Structure parameters

Correlation coefficients and structural parameters often are at the heart of single-
point turbulence models. One hopes that these parameters are less sensitive to flow
geometry than the turbulent stresses and heat fluxes.

Figure 14 shows the ratio of the wall-parallel normal stresses to the vertical normal
stress,

u′2 + w′2

v′2
.

This parameter is a measure of the coherence of the turbulent structures. The be-
haviour of this ratio is very different from its behaviour in 2DBLs (Klebanoff 1954)
and 3DTBLs (Bradshaw & Pontikos 1985; Anderson & Eaton 1989). In other flows,
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the parameter starts high with a value between 5 and 8 near the wall and then
monotonically decreases to around 2 at the outer edge of the boundary layer. In the
disk flow, the parameter starts low and increases before peaking in the outer layer
showing that the vertical motion is strong close to the disk but decreases relative to
the streamwise motion in the outer part of the flow.

The a1 parameter, defined for the disk flow as the ratio of the vector magnitude of
the shear stress to twice the turbulent kinetic energy,

a1 =

(
u′v′2 + v′w′2

)1/2

k2
,

represents the amount of turbulent mixing of momentum for a given level of turbu-
lence. Similar to other 3DBLs, the parameter is smaller than in 2DBLs indicating
that the disk boundary layer is less effective at creating shear stress from turbulent
motion. The reader is referred to Littell & Eaton (1991) for a detailed comparison of
a1 to other 3DBL results.

The correlation coefficients Ruθ and Rvθ are defined, respectively, as

Ruθ =

(
u′θ′2 + w′θ′2

)1/2

θ′
(
u′2 + w′2

)1/2
and Rvθ =

v′θ′

θ′
(
v′2
)1/2

.

In 2DTBLs, Ruθ is normally constant and approximately 0.7–0.8 while Rvθ is constant
as well and approximately 0.40–0.45. Figure 15(a) shows that there is a region where
Ruθ ≈ 0.5 below y/δ2 ≈ 4 but then the profiles decrease significantly with y. This

decrease above y/δ2 = 4 corresponds to the increase in u′2 + w′2 shown in Figure 14.
The significantly lower values for Ruθ show that turbulent heat transport is suppressed
in the disk boundary layer as hypothesized at the outset.

Figure 15(b) shows that the values for Rvθ are small close to the disk but mono-
tonically rise to a constant value between 0.4 and 0.45 in agreement with the 2DTBL
value. Again, the small values below y/δ2 = 4 are surprising because of the strength
of the vertical fluctuations indicated in figure 14 and the large temperature fluctua-
tions evident in figure 11. This is another testament to the fact that although there
is significant turbulence in the boundary layer, the structures do not seem to be
effectively transporting heat. In comparing Rvθ and similar parameters,

Aθ =
v′θ′

θ′
(
k2
)1/2

and A1θ =
v′θ′

θ′
(
u′v′2 + v′w′2

)1/4
,

to 2DTBL values, it was found that normalizing the vertical heat flux by v′ or the
wall-parallel shear stress worked well in generalizing parameters, but using k2 or other
quantities containing u′ and w′ did not work.

The turbulent Prandtl number is defined as the ratio of the eddy diffusivity for
momentum to the eddy diffusivity for heat, or

Prt =
εM

εH
=
−u′v′/(∂U/∂y)

v′θ′/(∂T/∂y)

This is not a rigorous definition for Prt in a 3DBL, where strictly speaking Prt should
be a second-order tensor. However, we are primarily interested in turbulent transport
in the vertical direction. The definition above deals solely with the vertical direction,
and, hence, is simpler and useful for our discussion. The turbulent Prandtl number is
typically assumed to be 1 in accordance with the Reynolds analogy. Many 2DTBL
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Figure 15. The correlation coefficients (a) Ruθ and (b) Rvθ for all cases.
Error bars from table 1.

studies have observed Prt to start slightly above 1 around y/δ2 = 1 and either stay
constant or slowly decrease to 0.8 at the edge of the boundary layer. The results of
three of these studies taken from Wroblewski & Eibeck (1990) are shown in figure
16. The values for Prt in other flows such as the disk flow are not well known, but
are important for modellers who calculate εH from Prt and εM . For instance, Ong &
Owen (1991) assumed Prt = 0.9 in their calculation of the turbulent disk flow. The
measurements presented in figure 16 show that Prt decreases monotonically in the
disk boundary layer reaching levels around 0.5 in the outer layer. The assumption of
Prt ≈ 0.9 is consistent with the data below y/δ2 = 4, but this level is too high over
most of the outer layer.

An objective of this experiment was to evaluate the effects that the three-dimension-
ality has on the turbulent heat flux and the wall-parallel shear stress. Since Prt in the
disk flow is slightly lower than the measurements of Wroblewski and even smaller
than the other measurements made in 2DBLs, the results indicate that the diffusivity
for momentum is reduced more than the diffusivity for heat. However, considering
the large uncertainty associated with both the present and previous turbulent Prandtl
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Figure 16. The turbulent Prandtl number (Prt) for all cases compared to results from several
2DBL studies. Error bars indicate uncertainty from table 1.

number measurements, this conclusion must be considered tentative. The conclusion
is supported by structural information discussed in the following section.

4. Quadrant analysis
Quadrant analysis similar to that of Lu & Willmarth (1973) was used to help

illuminate the differences between the turbulent heat flux and the turbulent shear
stress made evident in the results for Prt. In the discussion that follows, u′, v′, and
θ′ denote instantaneous fluctuations measured with the heat flux probe aligned with
the mean streamwise direction. The measurements for the shear stress, u′v′, represent
the vector magnitude of the shear stress in the mean streamwise direction. The data
presented in this section are from the Re = 6.5 × 105 case with BC1, but they
are representative of both boundary conditions and Reynolds numbers studied. The
results from two positions for the probe are discussed: y/δ2 = 1.11 (y+ = 123) which
is denoted by I and y/δ2 = 5.83 (y+ = 645) which is denoted by II . The time records,
which were originally sampled at 20 kHz, were downsampled to produce a total of
10 300 samples for each case.

Figure 17 shows the (u′, v′)-plane with a hole region as defined by Lu & Will-
marth. The hole region is the area where u′v′ or v′θ′ satisfies the condition |u′v′| 6
H(u′2)1/2(v′2)1/2, or |v′θ′| 6 H(v′2)1/2(θ′2)1/2, respectively, where H is a scalar represent-
ing the strength of a stress or heat flux producing event. The negative sign for the
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Figure 17. Definition of the five regions in the (u′, v′)-plane used in the quadrant analysis of
Lu & Willmarth (1973). The fifth region, or hole, is the striped area.
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Figure 19. The fraction of time the u′v′ signal is in each of the four quadrants for varying hole
sizes at (a) y/δ2 = 1.1 and (b) y/δ2 = 5.8 for Re = 6.5× 105.

temperature fluctuation is employed such that the ejection and sweep events for the
heat flux are associated with quadrants 2 and 4, respectively, just as these events are
for the shear stress.

Figure 18(a) shows the fractional contribution made to −u′v′ in each of the five
regions for varying hole size at the probe position I . The results for the ejection and
sweep quadrants closely resemble the data of Lu & Willmarth also shown in figure
18(a). Lu & Willmarth’s data are from y/δ = 0.052 for a 2DTBL at Reθ = 4230. This
height corresponds to a position inside one momentum thickness. In the disk flow, it
is significant that for values of H > 3, only ejection events outside the hole region are
contributing to the shear stress. Another interesting fact can be seen in a plot of the
fraction of time the shear stress is in a particular quadrant. Figure 19(a) shows that
slightly more sweep events occur than ejection events, but because the sweep events
are weaker, the ejections contribute more to the average shear stress.

Figure 18(b) shows the fractional contributions at position II , which is the outer-
most point measured with the heat flux probe. The plot looks substantially different
than the position closer to the wall and also much different than Lu & Willmarth’s
2DBL data from y/δ = 0.823. A large percentage of the contributions come from
the ejection quadrant while the sweep quadrant contributes only 35%. This small
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Re = 6.5× 105.

contribution is not due to the infrequency of sweep events. Rather, it is due to their
reduced strength. Above H = 1, there are no sweep events, but even for H = 5,
ejection events occur over 1% of the time. Another interesting result is that quadrant
3 makes a larger negative fractional contribution than it did close to the disk. Figure
19(b) shows the fraction of time the signal spends in each quadrant for position II .
It shows the remarkable result that sweeps occur nearly 40% of the time compared
to only 25% for ejections, yet the ejections contribute nearly three times as much to
the average shear stress.

Another interesting result is obtained by calculating the ratio of the contributions
from the ejection and sweep events for hole size H = 0. Lu & Willmarth found
this ratio to be nearly constant and equal to 1.35 across the boundary layer. Figure
20 shows that in the disk boundary layer, this ratio starts around 1.3 but quickly
increases with distance from the wall. The same ratio for vertical heat flux, however,
stays relatively constant between 1.1 and 1.6 indicating that the changes affecting the
shear stress are having only small effects on the heat flux.

Figure 21(a) shows the fractional contribution from the quadrants to v′θ′ at position
I . Note that ejections and sweeps contribute nearly equally at this level in the boundary
layer as do quadrants 1 and 3. Also noteworthy is the fact that both sweep and ejection
events share responsibility for v′θ′ even at large values of H , and, as figure 22(a) shows,
both types of events occur with nearly equal frequency.

Figure 21(b) shows the fractional contributions for position II . Just as we saw
in the u′v′ case, the sweep contribution is reduced, but, as is evident in Figure
22(b), more sweeps occur than ejections. Sweeps do, however, remain important for
H < 2.5. It is also interesting that the contribution from quadrant 3 remains small.
The differences between the results for the shear stress and heat flux events at this
height correlate well with the reduced values for Prt in the outer portion of the flow.
At this height, the turbulent structures are changed such that the ability to mix low-
and high-speed parcels of fluid is reduced while the effect on the transport of high-
and low-temperature fluid is less significant.

Quadrant analysis similar to that of Perry & Hoffmann (1976) was performed to
investigate the relationship between shear stress and heat flux events. Using their
definitions, {Ui} represents an event in the ith quadrant of the (u′, v′)-plane and {Θj}
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Figure 21. The fractional contributions to v′θ′ from the four quadrants and the hole for varying
hole sizes at (a) y/δ2 = 1.1 and (b) y/δ2 = 5.8 for Re = 6.5× 105.

represents an event in the jth quadrant of the (v′, θ′)-plane. The superscripts I and
II correspond to the two probe positions discussed above. The fractions of the total
time, or probability, for events in each quadrant were

P I [Ui] =

 0.17
0.31
0.18
0.34

 , P II [Ui] =

 0.17
0.25
0.19
0.39

 , (4.1)

P I [Θj] =

 0.17
0.30
0.22
0.31

 , P II [Θj] =

 0.15
0.28
0.19
0.38

 . (4.2)

These results are similar for the u′v′ and v′θ′ data at both probe positions and are
similar to the values observed by Perry & Hoffmann in the 2DBL.

Perry & Hoffmann also calculated the simultaneity of {Ui} and {Θj} events. They
defined simultaneity as

Qij = P [Ui ∩Θj].
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Figure 22. The fraction of time the v′θ′ signal is in each of the four quadrants for varying hole
sizes at (a) y/δ2 = 1.1 and (b) y/δ2 = 5.8 for Re = 6.5× 105.

The present results for Qij are

QIij =

 0.10 0.06 0 0
0.07 0.24 0 0

0 0 0.13 0.06
0 0 0.09 0.25

 , (4.3)

QIIij =

 0.09 0.08 0 0
0.06 0.19 0 0

0 0 0.10 0.08
0 0 0.09 0.30

 , (4.4)

which agree well with Perry & Hoffmann who observed simultaneity for sweeps and
ejections about 25% of the time (QI22 and QI44). Note there is a slight decrease in
QII22 from 0.24 to 0.19 and a slight increase in QII44 from 0.25 to 0.30 indicating that
momentum and thermal sweeps occur simultaneously more often than ejections at
this higher position.

Using the probability and simultaneity, it is possible to calculate the conditional
probability that a {Ui} event will occur given that a {Θj} event has occurred. Perry
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& Hoffmann represented this as Q′ij and defined it as

Q′ij = P [Ui|Θj] = P [Ui ∩Θj]/P [Θj].

The results for this are

Q′Iij =

 0.59 0.20 0 0
0.41 0.80 0 0

0 0 0.59 0.19
0 0 0.41 0.81

 , (4.5)

Q′IIij =

 0.60 0.29 0 0
0.40 0.68 0 0

0 0 0.53 0.21
0 0 0.47 0.79

 . (4.6)

These also agree with the results from Perry & Hoffmann and indicate a strong
likelihood that the structures in the boundary layer responsible for transporting heat
are also transporting momentum. The only difference is the value for Q′II22 which is
reduced from its typical value of 0.8 to 0.68 indicating that the ejection process high
in the boundary layer is different from 2DBL ejections.

To investigate the probability of events with different strengths, Perry & Hoffmann
used Lu & Willmarth’s idea of a hole size to indicate the strength of an event. They
used {Ŭi} to denote an event for which |u′v′| 6 H(u′2)1/2(v′2)1/2 and {Θ̆j} to denote

an event for which |v′θ′| 6 H(v′2)1/2(θ′2)1/2. The probability that {Ŭi} occurs together

with {Θ̆j}, given that the heat flux event has occurred, can be represented as

Rij = P [Ŭi|Θ̆j] = P [Ŭi ∩ Θ̆j]/P [Θ̆j].

Using the same values for H that Perry & Hoffmann used, the results for position I
are

RIij =

 0.06∗∗ 0 0 0
0.06∗∗ 0.68 0 0

0 0 0.19∗∗ 0
0 0 0 0.24

 for H = 2.5, (4.7)

and

RIij =

 0 0 0 0
0 0.62∗ 0 0
0 0 0 0
0 0 0 0

 for H = 4.25. (4.8)

One problem with conditioning events on H is that the number of strong events is
small. For this reason, the probabilities calculated from less than 100 events (1%
of the total number of events) are marked with ∗, and the probabilities calculated
from less than 20 events are marked with ∗∗. Since these events are occurring so
infrequently, they have little effect on the overall value for the shear stress and heat
flux.

The results at position I for H = 2.5 are similar to those from Perry & Hoffmann
who observed R22 = 0.76 compared to our 0.68 and R44 = 0.29 compared to 0.24.
The values in the disk flow are only slightly lower. This is true for H = 4.25 as well;
the disk value for the ejection quadrant is 0.62, reduced from 0.75 observed by Perry
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& Hoffmann. The important result in this case is that there is a high probability
that when a strong ejection of high-temperature fluid occurs, a strong ejection of
momentum occurs as well. The other important result is that only ejection events
occur for high values of H .

At position II , the results for Rij are different from those of Perry & Hoffmann.
These results are

RIIij =

 0 0 0 0
0.50∗∗ 0.68 0 0

0 0 0.55∗ 0
0 0 0 0

 for H = 2.5, (4.9)

and

RIIij =

 0 0 0 0
0 0.68 0 0
0 0 0.64∗∗ 0
0 0 0 0

 for H = 4.25. (4.10)

These results confirm our previous observations that the sweep and ejection mecha-
nisms have changed at this position. When conditioned on the strength of the event,
the probability for sweeps is zero since no u′v′ sweeps exist above H = 1. There is a
high probability that a strong ejection event produces ejections for both momentum
and heat.

5. Discussion
The turbulent heat fluxes and Reynolds stresses were measured from y/δ2 ≈ 1 to 6

corresponding to y/δ99 ≈ 0.1 to 0.5. The results show that this part of the boundary
layer can be split into an inner region below the approximate height of y/δ2 = 3
and an outer region above it. In the inner region, the quadrant analysis shows that
the fractional contributions from sweeps and ejections to u′v′ are similar to results in
2DBLs. The probability for a simultaneous ejection or sweep event in the (u′, v′)-plane
given that an ejection or sweep has occurred in the (v′, θ′)-plane was calculated to
be 80%. This value is a strong indicator that the same structures are transporting
momentum and heat. This is also indicated by Prt which is close to a value of 1
inside y/δ2 = 3.

However, there are differences with 2DBLs in this inner region. Littell & Eaton
showed that the a1 parameter has a value of ≈0.13 below y/δ2 = 3 which is below
the typical 2DTBL value of 0.15. The suppressed value was attributed to the effects
of three-dimensionality weakening the near-wall vortex structures. The results for the
correlation coefficients Rvθ and Ruθ support their findings. Rvθ is reduced well below
its two-dimensional value and is seen to rise monotonically as y/δ2 = 3 is approached.
This parameter is typically constant across the two-dimensional boundary layer. The
behaviour of this parameter suggests that close to the wall, the large amount of
random motion associated with the turbulence is poorly organized and results in little
net vertical heat flux. The correlation coefficient Ruθ is constant in the inner region,
but its value is low compared to 2DBLs.

It is believed that the basic mechanisms for eddy formation in the sublayer are the
same as in two-dimensional flat-plate boundary layers. This is supported by the fact
that streaky structures are observed to form in three-dimensional boundary layers
(Fleming & Simpson 1994) and that there is an equal likelihood of eddies with
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either sign of vorticity being associated with the vertical motion of fluid (Littell &
Eaton). However, these structures are quickly changed by the presence of cross-flow.
The effectiveness of these eddies in mixing fluid thereby creating shear stress and
turbulent heat flux is reduced.

Above y/δ2 = 3, the quadrant analysis shows considerable differences for the
turbulent structures in the outer region. The fractional contribution of ejections
begins to dominate the shear stress and, to a lesser extent, the heat flux. Such
dominance by u′v′ ejections is not observed in 2DBLs and indicates a fundamental
change in the dynamics at this level in the disk boundary layer. With the changes in
the ejection and sweep mechanisms, the u′ p.d.f. becomes increasingly skewed having
a dramatic effect on the structure parameter

u′2 + w′2

v′2

which increases rapidly with y/δ2. It is interesting that the probability of a stress
producing sweep conditioned on the occurrence of a sweep in the (v′, θ′)-plane main-
tains its 0.80 value, but the same conditional probability for ejections has decreased
to 0.68. This indicates that shear stress and turbulent heat flux events are not as
closely associated as they were in the inner region. Evaluating this change using the
results for the fractional contributions to u′v′ and v′θ′, it is seen that the transport of
momentum has been altered more than the transport of heat flux. Such a conclusion
is supported by the behaviour of the turbulent Prandtl number which decreases with
y/δ2 and drops slightly below the 2DTBL values. Moreover, the dominance of the
ejection events helps explain the lack of a wake profile in the mean tangential velocity
since the outer layer is dominated by slow fluid coming from the wall. Similarly, the
importance of both ejection and sweep events for v′θ′ helps explain the high values
for the temperature fluctuations and the wake profiles in the mean temperature data.

The characteristics of the outer layer in the disk boundary layer are partly due
to the three-dimensionality changing the evolution of the eddies in the inner region
but are also due to the nature of the disk flow in which velocity grows linearly with
radius. As the eddies grow and are convected downstream, they find themselves over
a region of higher velocity. This means they are weak compared to younger turbulent
eddies originating at this outer radial position. According to the quadrant analysis
and values for Rvθ , these eddies can transport passive scalars effectively; however,
they are less effective at mixing momentum.

6. Summary
New data are provided for coupled momentum and thermal transport in a simple

3DTBL, namely, the rotating disk boundary layer. Mean velocity and Reynolds stress
measurements agree well with previous isothermal studies showing that temperature
may be considered a passive scalar at the low temperature differences of the present
experiment. No previous measurements of scalar transport in 3DTBLs existed, but
extensive studies of the momentum transport suggested that scalar transport would
be reduced relative to 2DTBL levels.

The disk thermal boundary layer exhibits some unique characteristics. The wake
region often observed in semi-log plots of mean velocity was absent in the disk data,
but there was a significant wake region in the mean temperature data. The turbulent
temperature fluctuations have an expected peak near the wall, and, surprisingly, a
second peak in the outer regions of the flow. There is a radial turbulent heat flux not
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found in 2DTBLs, and w′θ′ also peaks in the outer region. In fact, the magnitude of
this heat flux is greater than or equal to the vertical heat flux above y/δ2 ≈ 3.

It appears that the disk boundary layer can be separated into two regions at a
height of y/δ2 ≈ 3. Below this height, three-dimensionality affects the turbulence
by weakening the quasi-streamwise structures responsible for turbulent shear stress
and heat flux. This is evident in the values for the a1 parameter and the correlation
coefficients Ruθ and Rvθ which have low values compared to 2DTBL results. Moreover,
the three-dimensionality seems to affect transport of momentum and heat similarly.
This is confirmed by the results for the turbulent Prandtl number, which is near unity
low in the boundary layer.

Above y/δ2 ≈ 3, the outer layer exhibits very different behaviour from what
is observed in flat-plate 2DTBLs. Quadrant analysis suggests that the root of the
differences is in the balance between ejecting and sweeping motions at this height.
Ejections of momentum dominate the shear stress with sweeps contributing virtually
nothing to the momentum transport. However, both sweeps and ejections contribute
to the vertical heat flux. This fundamental change in transport mechanisms manifests
itself in many of the unique characteristics of the disk outer layer. Most important
are the low values for the turbulent Prandtl number indicating that the transport of
momentum is weakened more than the transport of heat.

This work was supported by the Department of Energy Office of Basic Energy
Sciences through Grant DE-FG-93ER14317.
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